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This study is concerned with a two-dimensional electron–hole system in a strong perpendicular
magnetic field with special attention devoted to the Rashba spin–orbit coupling. The influence of this
interaction on the chemical potential of the Bose–Einstein condensed magnetoexcitons and on the
ground state energy, and on the energy of the single-particle elementary excitations are investigated
in the Hartree–Fock approximation. We demonstrate that chemical potential is monotonic function
versus the value of the filling factor with negative compressibility, which leads to instability of the
Bose–Einstein condensate of magnetoexcitons.
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1. INTRODUCTION

The influence of the spin–orbit coupling (SOC) on the two-
dimensional (2D) Wannier–Mott excitons in double quan-
tum well (DQW) structures, as well as the possibilities of
nonconventional electron–hole (e–h) pairing in these con-
ditions were discussed in Refs. [1, 2]. The main results
are breaking of the spin degeneracy of the electrons and
holes, changes of the exciton structure, and new proper-
ties of the Bose–Einstein condensed excitons. There are
two types of SOC. One of them described by Dresselhaus3

is known to be intrinsically present in zinc blende struc-
ture. The Rashba spin–orbit coupling (RSOC)4�5 depends
on the electric field strength Ez perpendicular to the layer
surface. Side by side with questions related to the Bose–
Einstein condensation (BEC) phenomenon, there exist a
vast number of investigations in the field of spin–orbit cou-
pling effects.6–13 Since the mid 1980s, as was mentioned
in Ref. [7], there has been extensive interest in the effects
of an applied electric field normal to the layers on the opti-
cal properties of semiconductor quantum wells (QWs) and
superlattices (SLs). The arising inversion asymmetry leads
to anisotropic optical transitions.
The theoretical calculations of the Pockels effect for

GaAs/Ga1−xAlxAs and SLs demonstrate this statement.7

In Ref. [6] it was underlined that the spin degeneracy of
the electron and hole states is the combined effect of the
inversion symmetry in space and time.

Nevertheless the Rashba spin splitting of 2D hole sys-
tems is very different from the more familiar case of 2D
electron systems. In Ref. [6] this was explained by the
fact that the holes have typically larger masses and smaller
kinetic energies. The SOC is more important for holes
than for electrons. When the carriers are moving through
the inversion asymmetric potential, the spin degeneracy
is removed even in the absence of an external magnetic
field B. In this case there are two different branches of
energy, E↑��k� �= E↓��k�, and the spin splitting is present.
In quasi-2D QWs this spin splitting can be the conse-
quence of a bulk inversion asymmetry (BIA) of the under-
lying crystal (for example, as in zinc blende crystals), or of
a structure inversion asymmetry (SIA) of the confinement
potential.
In both cases of inversion asymmetry the spin split-

ting takes place in the absence of B, i.e., E↑��k� �= E↓��k�,
but the Kramers degeneracy continues to exist, E↑��k� =
E↓�−�k�. This spin splitting is not due to the Zeeman effect
because B = 0. In Ref. [6] the origin of the spin split-
ting is related with the motion of the electron through
the inversion asymmetric spatial environment, the interac-
tion with which is due to the SOC. The periodic parts of
the electron Bloch functions are affected by the atomic
fields that enter into the Pauli spin–orbit term, whereas
the envelope functions are affected by the macroscopic
environment. Following this picture, SIA leads to spin
splitting, which is due to both the macroscopic electric
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field and the microscopic electric field from the atomic
cores.
SIA spin splitting is always proportional to the macro-

scopic field strength times a prefactor depending on the
microscopic spin–orbit interaction (SOI). This prefactor
depends only on the matrix elements of the microscopic
SOI and is due completely to the BIA. To reveal the origin
of the spin splitting in a simpler way the following idea
was suggested. One can imagine the electron moving with
velocity V�� to the plane of the layer subjected to the action
of a perpendicular electric field Ez.

In the reference frame moving together with the elec-
tron the Lorentz transformation induces the magnetic field
B = �V��/c�Ez, which acts on the electron spin giving rise
to such an indirect Zeeman effect. The estimations made
showed that the spin splitting obtained in such a way is
5–6 orders of magnitude smaller than the experimentally
observed values of the SOC. The discrepancy is due to the
fact that the idea of Lorentz transformation neglects the
contribution of the atomic cores to the SOI felt by Bloch
electrons in a solid.6 Another important detail, which must
be remembered, is related to the crystallographic sym-
metry group of the solids. The spin splitting induced by
the atomic cores, which is also called BIA splitting, also
depends on the irreducible representations of the double
group of the wavevector �k. For example, in the case of �k
parallel to the �111� direction the wavevector group is C3v.
It has the double-group irreducible representations �4� �5
and �6. In the case when the electron and light hole (LH)
states transform according to the 2D representations �4,
whereas the heavy hole (HH) states transform according
to the 1D representations �5 and �6, the BIA spin splitting
vanishes for electrons and LHs and exists for HHs.6 RSOC
and intrinsic SOI under certain conditions lead to a Dirac
cone formation out of a parabolic band and it is possible
to create a “Mexican-hat-like” energy dispersion law.8 The
Mexican-hat-like dispersion has a line of degenerate low-
energy points forming a ring. It can appear in a variety
of physical systems. Such peculiarities were demonstrated
in Refs. [1, 2]. The Mexican-hat-like dispersion law leads
to a weak crystallization transition,9 whereas in cold atom
physics it gives rise to topologically different ground states
of the Bose–Einstein condensed atoms and molecules.8

Now the Landau quantization of electrons and holes
depending on their band structure will be discussed. In
the calculations of Refs. [10, 11] of the hole Landau lev-
els in the strained asymmetric p-type GeSixGe1−x QWs
the cyclotron masses were determined. Self-consistent hole
subband calculations were combined with calculations of
the Landau levels using a 6× 6�k · �p Hamiltonian for the
topmost �8 and �7 bulk valence bands.
To include the magnetic field in the calculation of the

Landau levels the canonical momentum p̂=−i� �� is sub-
stituted by the kinetic momentum �̂ = p̂−q �A��r�/c, where
q is the electric charge of the quasi-particle.6 These ques-
tions have been discussed in Ref. [14].

As was mentioned in Refs. [12, 13] the Rashba model
can be described by purely group theoretical means. For
an electron in an s-like conduction band the total angular
momentum with SOI is j = 1/2. Both the wavevectors �k
and the electric strength �E are polar vectors, whereas their
cross product ��k× �E	 is an axial vector. Its point product
with the spin axial vector �
 gives rise to the triple scalar
product ��k× �E	 · �
 . This expression is an invariant under
the action of the group symmetry elements forming the
identity representation �1. Similar arguments were given
in Ref. [15]. In the first quantization representation the
wavevector �k is substituted by −i �� . In the �6-type con-
duction band the triple scalar product is the only term of
the first order in �� and �E compatible with the symmetry
of the band.
The electric field strength Ez depends on the density of

charges in the syste.12�13 The interaction constants �eEz

and �hEz were evaluated in Refs. [1, 2] for different
values of Ez, arriving at the conclusion that at Ez =
100–200 kV/cm the RSOC is a dominant mechanism for
the energy band spin splitting. The main goals of the
Refs. [1, 2] were to show that changing these parame-
ters is an alternative method to examine the BEC of the
2DWannier–Mott excitons and their crossover from the
low density regime with atom-like structure of the e–h
pairs to the high density e–h pairs. In the latter case the
electrons and holes form a Fermi degenerate gas. The weak
interaction of the particles near the corresponding Fermi
levels gives rise to their coherent pairing and to Bardeen–
Cooper–Schrieffer (BCS)-type condensation.16

In the presence of the SOC the real excitonic order
parameter is changed due to the mixing of the spin states.
One of the most distinct effects, which is expected to take
place in the frame of exciton condensation is the control-
lable mixing of the dark and bright exciton states.1�2 Their
mixing could lead to a change of the intensity of the coher-
ent light emission. It was supposed that the ground exci-
ton state is composed predominantly of the dark excitons,
which do not couple to the light due to the total spin pro-
jections of the e–h pair being equal to ± 2. In the frame
of this model the bright excitons with spins �±1� are sit-
uated above the dark excitons. Similar questions will be
discussed below in the case of 2D magnetoexcitons.
The aim of the present paper is to investigate prop-

erties of the electron–hole system beyond the Hartree–
Fock–Bogoliubov approximation, taking into account the
Rashba spin–orbit coupling. We consider three aspects of
the problem: obtain the chemical potential of the BEC-ed
magnetoexcitons, study the energy of the single-particle
elementary excitations and the ground state energy.

2. HAMILTONIAN OF THE COULOMB
ELECTRON–HOLE INTERACTION

The e–h Coulomb interaction we obtain below taking into
account the influence of the RSOC in the frame of the
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conduction and valence bands. The corresponding Bloch
wavefunctions including their periodic parts are

�c�R1� p�x� y�� =
eipx√
Lx

Uc�s�p��r�
∣∣∣∣∣
a0�0��c�

b1�1��c�

∣∣∣∣∣
�v�R1� q� x� y�� =

eiqx√
Lx

1√
2
�Uv�P�X�q��r�

−iUv�P�Y �q��r��
∣∣∣∣∣
c3�3��v�

d0�0��v�

∣∣∣∣∣
�c =

y

l
−pl� �v =

y

l
−ql

(1)

Here Uc�s�p��r� is the s-type conduction band periodic
part and �1/

√
2��Uv�P�X�q��r�− iUv�P�Y �q��r�� are the p-type

valence band periodic parts. a0� b1�d0� c3 are the coeffi-
cients of spin–orbit interaction.14

The orthogonality between the conduction and valence
electron Bloch wavefunctions is attained due to their
orthogonal periodic parts, whereas the orthogonality of the
wavefunctions belonging to the same bands and having
the same periodic parts is reached due to different num-
bers of Landau quantization wavefunctions �c�n�y�p� and
�v�m�y�p�. The conduction and valence electrons have the
same electric charge −�e� and their dimensionless vari-
ables have the same structure y/l−pl and y/l− ql. The
last variable is y

l
+ql in the case of the hole wavefunction

�h�n�y� q� due to the positive value of the hole charge �e�.
The electron and hole states on the given Landau level

are N manifold degenerated, where

N = S

2�l2
� l2 = �c

eH
(2)

Here S is the surface area of the layer and 2�l2 is the area
of the quantum cyclotron orbit with the radius l

√
2. Thus,

N is the total number of the possible center of gyration
positions on the surface of the layer.
The Hamiltonian of the Coulomb electron–hole interac-

tion can be calculated in the same way as was demon-
strated in the paper.17 Differently from it we have dealt
with spinor-type wavefunctions for electrons and holes
with a column representation (1). The creation and annihi-
lation operators for conduction and valence electrons are
denoted as a†

c�Ri�p
� ac�Ri�p

� a†
v�Rj �q

� av�Rj �q
. The Hamiltonian

of their Coulomb interaction has the form:

Ĥ = −�e

∑
p

a†
pap−�h

∑
p

b†
pbp

+ 1
2

∑
p�q�s

Fc−c�c�Ri�p�c�Ri�q�c�Ri�p−s�c�Ri�q+s�

×a†
c�Ri�p

a†
c�Ri�q

av�Ri�q+sac�Ri�p−s

+ 1
2

∑
p�q�s

Fv−v�v�Rj�p�v�Rj�q�v�Rj�p−s�v�Rj�q+s�

×a†
v�Rj �p

a†
v�Rj �q

av�Rj �q+sav�Rj �p−s

−∑
p�q�s

Fc−v�c�Ri�p�v�Rj�q�c�Ri�p−s�v�Rj�q+s�

×a†
c�Ri�p

a†
v�Rj �q

av�Rj �q+sac�Ri�p−s (3)

Here the Coulomb matrix elements are determined as
follows

Fc−v�c�Ri�p�v�Rj�q�c�Ri�p−s�v�Rj�q+s�

=
∫
d ��1

∫
d ��2

c∗
Ri�p

� ��1�
v∗
Rj �q

� ��2�

×V12
c
Ri�p−s� ��1�

v
Rj �q+s� ��2� (4)

where

V12 =
e2

�0� ��1− ��2�
(5)

Here the function c
Ri�p

are the envelope parts (1) of the
Bloch functions. Their periodic parts being integrated on
the elementary lattice cell, can be excluded from the final
expressions of the desirable matrix elements, because the
dipole moments of the band to band transitions are not
needed now. The variables ��i are 2D vectors and �0 is the
dielectric constant of the medium. The series expansion of
the Coulomb interaction

V12 =
∑
��
V�� exp�i��� ��1− ��2�	 (6)

will be used, where ��= ��x��y� is 2D wave vector and

V�� = V�x��y
= 2�e2

�0S����
= 2�e2

�0S
√
�2
x +�2

y

(7)

The matrix elements (3) have the following form:
∑
p�q�s

Fc−c�c�Ri�p�c�Ri�q�c�Ri�p−s�c�Ri�q+s�

=∑
�y

Vs��y
exp

[
− �s2+�2

y�l
2

2
−i�y�q+s−p�l2

]

×
(
�a0�2+�1− �s2+�2

y�l
2

2
��b1�2

)2

∑
p�q�s

Fv−v�v�Rj�p�v�Rj�q�v�Rj�p−s�v�Rj�q+s�

=∑
�y

Vs��y
Exp

[
− �s2+�2

y�l
2

2
−i�y�q+s−p�l2

]
×
(
�d0�2

+
(
1− �s2+�2

y�l
2�−12+�s2+�2

y�l
2��−6+�s2+�2

y�l
2�

48

)
�c3�2

)2

∑
p�q�s

Fc−v�c�Ri�p�v�Rj�q�c�Ri�p−s�v�Rj�q+s�

=∑
�y

Vs��y
Exp

[
− �s2+�2

y�l
2

2
+i�y�q+p�l2

]
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×
(
�c3�2�a0�2

48−�s2+�2
y�l

2�−12+�s2+�2
y�l

2��−6+�s2+�2
y�l

2�

48

+�d0�2�b1�2
�2−�s2+�2

y�l
2�

2
+�a0�2�d0�2+�c3�2�b1�2

×�96−192�s2+�2
y�l

2+108�s2+�2
y�

2l4

−20�s2+�2
y�

3l6+�s2+�2
y�

4l8�·�96�−1

)
(8)

3. GROUND STATE ENERGY, CHEMICAL
POTENTIAL AND ENERGY OF THE
SINGLE-PARTICLE ELEMENTARY
EXCITATIONS

Consider the BEC of magnetoexcitons in a single particle
state with wave vector �k in the Hartree–Fock–Bogoliubov
approximation (HFBA) and Rashba spin–orbit interaction.
The energy of electrons and holes as well as their chemi-
cal potentials are measured relative to their lowest Landau
levels. The exciton formation reaction e+h↔ ex implies
the relation between the chemical potentials

�e+�h = �ex = � (9)

Below, we assume �e = �h = �ex/2.
In the case of BEC of magnetoexcitons in Ref. [18] as

a ground state wave functions was chosen the BCS-type
wave function �g�k�� and as the excited wave functions
the wave functions of the coherent excited states intro-
duced in Ref. [18] for e–h systems in a similar way as it
was done by Anderson19 in the case of superconductors.
The ground state wave function was introduced following
Keldysh–Kozlov method20 by the action of the displace-
ment unitary transformation D̂�

√
Nex� on the vacuum state

of the initially introduced electron–hole operators

�g�k�� = D̂�
√
Nex��0�� ap�0� = bp�0� = 0 (10)

The coherent excited states were generated in Ref. [18] by
the expression

�e�q± Qx

2
�� = aq+Qx/2

aq−Qx/2
�g�k�� (11)

The unitary transformation D̂�
√
Nex� breaks the gauge

symmetry of the starting Hamiltonian (3) transforms it in
a new Hamiltonian D̂HD̂† gives to the ground state wave
function �g�k�� and to macroscopic displacement

√
Nex

of the exciton creation operator

d†�k�= 1√
N

∑
t

e−iQytl
2
a†
kx/2+tb

†
kx/2−t (12)

In difference on the quantum optics and on Glauber Coher-
ent states21 the exciton creation and annihilation opera-
tors are not pure Bose operators but only quasi-boson
operators.22

The unitary transformation

D̂�
√
Nex�= exp�

√
Nex�d

†�k�−d�k��	 (13)

leads to Bogoliubov u–v transformation

�p =DapD
† = uap−v

(
p− kx

2

)
b†
kx−p

�p =DbpD
† = ubp+v

(
kx
2
−p

)
a†
kx−p

(14)

as well as to inverse transform action

ap = u�p+v

(
p− kx

2

)
�†
kx−p

bp = u�p−v

(
kx
2
−p

)
�†
kx−p

(15)

where

u= cosg� v = sin g� u2+v2 = 1

v�t�= ve−iKytl
2
� g =√

2�l2nex� nex =
Nex

S

(16)

with the confinement of the lowest Landau levels (LLLs).
It was shown that Ref. [18]

Nex = v2N� nex =
v2

2�l2
� g = v (17)

where v2 is the filling factor of the LLLs.
It leads to the relations u = cosv and v = sin v, which

can be satisfied only in the limit v < 1. The theory devel-
oped in Ref. [18] and its application below can be made
in the restriction v < 1.
The Hamiltonian (3) after the unitary transformation

(15) will contain operators �†
p��p��

†
p��p in arbitrary

ordering:
H = U +H2+H ′ (18)

The first term U does not contain operators �p and �p

and plays the role of the new ground state energy. The
second term H2 is quadratic in the operators �p and �p

and appears as a result of transpositions of the new oper-
ators and their normal ordering. In this transposition, the
commutation relations of the Fermi operators �p and �p

transform terms with four operators into quadratic terms.
The term H ′ contains the remaining normal-ordered terms
with four operators, which is treated as a perturbation. The
term U can be represented as

U = −�Nex − �1−v2�NexIex��k��a0�2�d0�2

− 1
2
v2NexIl�a0�4−−1

2
v2NexIl�d0�4

− 3
8
v2NexIl�b1�4−

147
512

v2NexIl�c3�4 (19)

where Iex��k� is the exciton ionization potential:

Iex��k�= Ile
−k2l2/4I0

(
k2l2

4

)
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Here Il is the ionization potential of magnetoexciton within
the lowest Landau levels approximation and equals to
e2/�l

√
�/2, where l is magnetic length and � is the back-

ground dielectric constant. I0�z� is the modified Bessel
function.
The term H2 contains diagonal quadratic terms as well

as the terms describing the creation and annihilation of the
new e–h pairs from the new vacuum state �g��k��. It has
the form

H2 =
∑
p

E��k�v2�����+
p �p+�+

p �p�−
∑
p

[
uv

(
kx
2
−p

)
�kx−p�p

+uv

(
p− kx

2

)
�+
p �

+
kx−p

]
��k�v2��� (20)

where

E��k�v2��� = −u2v2Il�a0�4−
3
4
u2v2Il�b1�4

+v4Il�d0�4+
147
256

Ilv
4�c3�4

+2u2v2Iex��k��a0�2�d0�2−
�

2
�u2−v2� (21)

and

��k� v2��� = −Iex��k��v2−u2��a0�2�d0�2

+ 3
4
Ilv

2

(
49
64

�c3�4+�b1�4
)

+ Ilv
2��a0�4+�d0�4�+� (22)

It is seen from the Hamiltonian H2 that the new quasi-
particles described by the operators �p��p can appear
spontaneously from the new vacuum state as a pair with
total momentum kx, which coincides with the translational
wave vector of the Bose–Einstein condensate of magne-
toexcitons. Such terms in the Hamiltonian and the corre-
sponding diagrams are called dangerous ones and make
the new vacuum state unstable. To avoid this instability,
the condition of compensation of the dangerous diagrams
is used. In the Hartree–Fock–Bogoliubov approximation
(HFBA), when only the dangerous diagrams in H2 are
taken into account, the condition of their compensation is

��k� v2���= 0 (23)

This condition determines the unknown parameter of the
theory, namely the chemical potential � of the system.
In the HFBA it is

� = Iex��k��v2−u2��a0�2�d0�2−
3
4
Ilv

2

(
49
64

�c3�4+�b1�4
)

− Ilv
2��a0�4+�d0�4� (24)

With the help of � we can determine self-consistently the
ground state energy U and the energy of the single-particle

elementary excitations, which in the given approximation
are:

U = v2Nex

(
1
2
Il��a0�4+�d0�4�− Iex��k��a0�2�d0�2

)

+ 3
8
v2NexIl

(
49
64

�c3�4+�b1�4
)

E��k� v2���= 1
2
Iex��k�−

1
2
Ilv

2�a0�4+
1
2
Ilv

2�d0�4

+ 3
8

(
49
64

�c3�4−�b1�4
)
Ilv

2

(25)

This result well agrees with the result of Ref. [18]. Indeed,
if we assume that there is no spin–orbit interaction then
by Ref. [14] �a0�2 = �d0�2 = 1 and �c3�2 = �b1�2 = 0, and
we will get exactly the same expression for the chemical
potential, the ground state energy U and the energy of the
single-particle elementary excitations as in the Ref. [18].
One can remember that in the GaAs-type crystal the elec-

tron cyclotron energy ��ce becomes comparable to and
larger than the 2D Wannier–Mott exciton binding energy
and at the same time the magnetic length l becomes smaller
than the exciton Bohr radius just at the values H ≥ 7 T.
Magnetoexcitons exist only in the range of high per-

pendicular magnetic field, therefore we will demonstrate
our results with high magnetic and electric fields: Ez =
10 kV/cm and H = 10 T.
In Figure 1 is presented the chemical potential versus

filling factor v2 for different values of the wave vector �k.
You can see that chemical potential is monotonic function
with negative compressibility, which leads to instability of
the Bose–Einstein condensate of magnetoexcitons. Simi-
lar result was obtained in the paper,18 when was consid-
ered BEC of magnetoexcitons without taken into account
Rashba spin–orbit coupling and excited Landau levels.
The energy of the single-particle elementary excitations

and the ground state energy depends on the two parame-
ter: one of them is the filling factor v2, but another is the

Fig. 1. Chemical potential versus filling factor v2 for different values of
the wave vector �k. Solid line: chemical potential of condensed excitons
with kl = 0; Dashed line: the same, but for kl = 0�5; Dotted line: the
same, but for kl = 1; Dot-dashed line: the same, but for kl = 3�6.
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Fig. 2. The energy of the single-particle elementary excitations versus
filling factor v2 and wave vector �k.

Fig. 3. The ground state energy versus filling factor v2 and wave
vector �k.

wave vector �k. Their behavior can see in Figures 2 and 3.
With increasing values of the wavevector energy of the
single-particle elementary excitations decreases asymptot-
ically. The ground state energy has a reverse picture with
increasing values of the wavevector ground state energy
increasing with saturation. Also be noted that if the ground
state energy increases with the increases filling factor, but
the energy of the single-particle elementary excitations
vice versa decreases.

4. CONCLUSION

We have studied the coherent pairing of electrons and
holes in an ideal 2D structure in a strong transverse mag-
netic field under the influence Rashba spin–orbit cou-
pling. The coherent pairing results in the Bose–Einstein

condensation of 2D magnetoexcitons on the single-particle
state with wave vector �k. The Keldysh–Kozlov–Kopaev
method supplemented by the generalized random phase
approximation was applied for the analysis. We have
shown that chemical potential is monotonic function
versus the value of the filling factor with negative com-
pressibility, which leads to instability of the Bose–Einstein
condensate of magnetoexcitons.

Acknowledgment: This research was supported by the
Foundation for Young Scientists of the Academy of
Sciences of Moldova, Grant No. 11.819.05.13F. Author
is grateful to Professor S. A. Moskalenko for useful
discussions.

References and Notes

1. T. Hakioglu and M. S. Sahin, Phys. Rev. Lett. 98, 166405 (2007).
2. M. C. Ali and T. Hakioglu, Phys. Rev. Lett. 103, 086404 (2009).
3. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
4. E. I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960).
5. Yu. A. Bychkov and E. I. Rashba, Pis. Zh. Eksp. Teor. Fiz. 39, 66

(1984).
6. R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Elec-

tron and Hole Systems, Springer Tracts in Modern Physics, Springer,
Berlin (2003), Vol. 191.

7. B.-F. Zhu and Y.-C. Chang, Phys. Rev. B 50, 11932 (1994).
8. R. van Gelderen and C. M. Smith, Phys. Rev. B 81, 125435 (1994).
9. S. A. Brazovskii, Zh. Eksp. Teor. Fiz. 68, 175, (1975); S. A.

Brazovskii, Sov. Phys.—JETP 41, 85 (1975), Engl. transl.
10. R. Winkler, M. Merkler, T. Darnhofer, and U. Rossler, Phys. Rev. B

53, 10858 (1996).
11. U. Ekenberg and M. Altarelli, Phys. Rev. B 32, 3712 (1985).
12. R. Winkler, Phys. Rev. B 62, 4245 (2000).
13. R. Winkler, H. Noh, E. Tutuc, and M. Shayegan, Phys. Rev. B

65, 155303 (2002).
14. T. Hakioglu, M. A. Liberman, S. A. Moskalenko, and I. V. Podlesny,

J. Phys.: Cond. Matt. 23, 345405 (2011).
15. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostruc-

tures. Symmetry and Optical Phenomena, Springer Series in Solid-
State Sciences, Springer, Berlin (1997), Vol. 110, p. 370.

16. S. A. Moskalenko and D. W. Snoke, Bose–Einstein Condensation of
Excitons and Biexcitons and Coherent Nonlinear Optics with Exci-
tons, Cambridge University Press, Cambridge (2000), p. 415.

17. S. A. Moskalenko, M. A. Liberman, P. I. Khadzhi, E. V. Dumanov,
Ig. V. Podlesny, and V. Botan, Physica E 39, 137 (2007).

18. S. A. Moskalenko, M. A. Liberman, D. W. Snoke, and V. V. Botan,
Phys. Rev. B 66, 245316 (2002).

19. P. W. Anderson, Phys. Rev. 110, 827 (1958).
20. L. V. Keldysh and A. N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968);

L. V. Keldysh and A. N. Kozlov, Sov. Phys.-JETP 27, 521 (1968),
Engl. transl.

21. R. J. Glauber, Phys. Rev. 130, R529 (1966); R. J. Glauber, Phys.
Rev. 131, 277b (1966).

22. M. Combescot and C. Tanguy, Europhys. Lett. 55, 390 (2001).

Received: 20 August 2012. Accepted: 14 September 2012.

J. Nanoelectron. Optoelectron. 7, 724–729, 2012 729


